Bayesian Transductive Markov Random Fields for Interactive Segmentation in Retinal Disorders

نویسندگان

  • Noah Lee
  • Andrew F. Laine
چکیده

In the realm of computer aided diagnosis (CAD) interactive segmentation schemes have been well received by physicians, where the combination of human and machine intelligence can provide improved segmentation efficacy with minimal expert intervention [1-3]. Transductive learning (TL) or semi-supervised learning (SSL) is a suitable framework for learning-based interactive segmentation given the scarce label problem. In this paper we present extended work on Bayesian transduction and regularized conditional mixtures for interactive segmentation [3]. We present a Markov random field model integrating a semi-parametric conditional mixture model within a Bayesian transductive learning and inference setting. The model allows efficient learning and inference in a semi-supervised setting given only minimal approximate label information. Preliminary experimental results on multimodal images of retinal disorders such as drusen, geographic atrophy (GA), and choroidal neovascularisation (CNV) with exudates and subretinal fibrosis show promising segmentation performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Markov random fields and Bayesian image segmentation

Markov random fields are used extensively in modelbased approaches to image segmentation and, under the Bayesian paradigm, are implemented through Markov chain Monte Carlo (MCMC) methods. In this paper, we describe a class of such models (the double Markov random field) for images composed of several textures, which we consider to be the natural hierarchical model for such a task. We show how s...

متن کامل

Interactive Segmentation in Multimodal Medical Imagery using a Bayesian Transductive Learning Approach

Labeled training data in the medical domain is rare and expensive to obtain. The lack of labeled multimodal medical image data is a major obstacle for devising learning-based interactive segmentation tools. Transductive learning (TL) or semi-supervised learning (SSL) offers a workaround by leveraging unlabeled and labeled data to infer labels for the test set given a small portion of label info...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Statistical image segmentation using Triplet Markov fields

Hidden Markov fields (HMF) are widely used in image processing. In such models, the hidden random field of interest S s s X X ∈ = ) ( is a Markov field, and the distribution of the observed random field S s s Y Y ∈ = ) ( (conditional on X ) is given by ∏ ∈ = S s s s x y p x y p ) ( ) ( . The posterior distribution ) ( y x p is then a Markov distribution, which affords different Bayesian process...

متن کامل

248 Remotely Sensed Data Characterization

EMPs Extended morphological profiles EMPs Extended morphological profiles LDA Linear discriminant analysis LogDA Logarithmic discriminant analysis MLR Multinomial logistic regression MLRsubMRF Subspace-based multinomial logistic regression followed by Markov random fields MPs Morphological profiles MRFs Markov random fields PCA Principal component analysis QDA Quadratic discriminant analysis RH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009